Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny
نویسندگان
چکیده
Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially-but generally remain highly conserved-in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within) putative regulatory elements among the eutherian lineages with an intact UCP1 suggests that the transcriptional control of gene expression is not highly conserved in this mammalian clade.
منابع مشابه
Commentary: Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny
متن کامل
Evolution of the mammalian transcription factor binding repertoire via transposable elements.
Identification of lineage-specific innovations in genomic control elements is critical for understanding transcriptional regulatory networks and phenotypic heterogeneity. We analyzed, from an evolutionary perspective, the binding regions of seven mammalian transcription factors (ESR1, TP53, MYC, RELA, POU5F1, SOX2, and CTCF) identified on a genome-wide scale by different chromatin immunoprecipi...
متن کاملA novel test for selection on cis-regulatory elements reveals positive and negative selection acting on mammalian transcriptional enhancers.
Measuring natural selection on genomic elements involved in the cis-regulation of gene expression--such as transcriptional enhancers and promoters--is critical for understanding the evolution of genomes, yet it remains a major challenge. Many studies have attempted to detect positive or negative selection in these noncoding elements by searching for those with the fastest or slowest rates of ev...
متن کاملRegulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.
Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer element...
متن کاملCombinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila
Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs...
متن کامل